Section 1: PV Array Configuration

- Module manufacturer, make, model, and number of modules match the approved plans. (IBC107.4)
- PV modules are listed to UL 1703. (NEC 110.3, 690.4 & IBC 1509.7.4) Note: AC modules need to be listed to UL 1703 and UL 1741.
- DC modules are properly marked and labeled. (NEC 110.3, 690.4(D) and 690.51)
- AC modules are properly marked and labeled. (NEC 110.3, 690.4(D) & 690.52)
- Modules are attached to the mounting structure according to the manufacturer’s instructions and the approved plans. (NEC 110.3(B), IBC 107.4)
- Roof penetrations are flashed and counter-flashed. (IBC Chapter 15 & IRC Chapter 9)
- PV modules are in good condition (i.e., no broken glass or cells, no discoloration, frames not damaged, etc.) (NEC 110.12(B))
- Residential one and two family dwelling limited to maximum PV system voltage of 600 volts. (NEC 690.7)
- Rooftop systems are designed in accordance with the IBC. (IBC 1509.7)
- Roof access points, paths and clearances need to comply with the IFC. (IFC 605.11.1-605.11.1.3)

Section 2: Grounding

- A complete grounding electrode system is installed. (NEC 690.47(A) & (B))
- Modules are grounded in accordance with manufacturer’s installation instructions using the supplied hardware or listed equipment specified in the instructions and identified for the environment, and using the grounding point identified on the module and in the manufacturer’s instructions. (NEC 690.43 & 110.3(B))
- Properly sized equipment grounding conductor is routed with the circuit conductors. (NEC 690.45, 250.134(B) & 300.3(B))
- AC and DC grounding electrode conductors are properly connected. Separate electrode, if used, are bonded together. (NEC 690.47, 250.50 & 250.58)
- Bonding fittings are used on concentric/eccentric knockouts with metal conduits for circuits over 250 volts. (NEC 250.97) (see also exceptions 1-4)
Bonding fittings are used for ferrous metal conduits enclosing grounding electrode conductors. (NEC 250.64(E)(1 – 4))

Section 3: Wire Management

- Wires are secured by staples, cable ties, straps, hangers or similar fittings at intervals that do not exceed 4.5 feet. (NEC 334.30 & 338.12(A)(3)
- Wires are secured within 12 inches of each box, cabinet, conduit body or other termination. (NEC 334.30 & 338.12(A)(3)
- Exposed single conductors, where subject to physical damage, are protected. (NEC 230.50(B) & 300.5(D))

Section 4: Conductors

- Exposed single conductor wiring is a 90C, wet rated and sunlight resistant type USE-2 or listed PV wire. (NEC 690.31(C)) If the wiring is in a conduit, it is 90C, wet rated type RHW-2, THWN-2 or XHHW-2. (NEC 310.15)
- Exposed single conductors used for ungrounded (transformer less) systems are listed and identified as “PV wire”. (NEC 690.35(D)(3)) For other conductor requirements for ungrounded systems see NEC 690.35(D)
- Conductor insulation is rated at 90C to allow for operation at 70C+ near modules. (NEC 310.15)
- Where conductors or cables are installed in conduits exposed to direct sunlight on or above rooftops, correction factors for ambient temperature adjustments are applied. (NEC 310.15 (B)(3)(c))
- Grounded conductor is identified white or grey. (NEC 200.6)
- Open conductors are secured and protected. (NEC 338.12(A)(3) & 334.30)
- Conductors are not in contact with the roof surface. (NEC 334.30)
- DC conductors inside a building are in a metal raceway or MC metal-clad cable that complies with 250.118 (10), or metal enclosures. (NEC 690.31(G))
- If more than one nominal voltage system conductor is installed in the raceway, permanent identification and labeling is required. (NEC 200.6(D) & 210.5(C))
- For underground conductor installations, the burial depth is appropriate and warning tape is in place. (NEC 300.5(D)(3) & Table 300.5)
- Aluminum is not placed in direct contact with concrete. (NEC 250.120(B) & 110.11)
- DC source circuit conductors are rated at 1.25x1.25= 156% short-circuit (ISC) current from modules. NOTE: the module ISC x number of combined strings, if strings are combined. When DC source circuits (strings) are connected in parallel the short circuit current multiplies and PV output conductors from combined strings need to be sized appropriately. (NEC 690.8(A) & 690.9(A))
Section 5: Overcurrent Protection

☐ Overcurrent devices in the DC circuits are listed for DC operation. (NEC 110.3(A), (B) & 690.9(C))

☐ DC source circuit overcurrent protection devices are rated at $1.25 \times 1.25 = 156\%$ short-circuit (ISC) current from modules. NOTE: The module ISC x number of combined strings, if strings are combined. When DC source circuits (strings) are connected in parallel the short circuit multiplies DC over-current protective devices need to be sized appropriately. (NEC 690.9(A))

☐ Inverter output circuit overcurrent protection device (point of connect to AC systems breaker) is sized based on the maximum inverter output current x 125%. (NEC 690.8(A)(3) & 690.9(A))

☐ Overcurrent protection is required for the PV source circuit (modules and parallel connected modules), PV output circuit (conductors between source circuits and inverter), inverter output circuit, battery circuit conductors and equipment. (NEC 690.9(A))

☐ When three or more strings are combined, a listed combiner box (UL 1741) is used and fuses are required. When DC source circuits (strings) are connected in parallel, the current through a failed circuit can be the sum of the current connected from the other strings, therefore special consideration must be taken to ensure the sum of the total number of strings minus one does not exceed the module manufacturers series fuse rating, or conductor ampacity. (NEC 110.3(B) & 690.9(A)) NOTE: there are a few exceptions where the module has a higher series fuse rating and a low ISC rating.

☐ When a back-fed breaker is used as a utility interconnection means, the breaker does not read “line and load.” (NEC 110.3(B), 690.64 & 705.12(D)(4))

☐ PV interconnect breaker is located at the opposite end of the buss from the feeder connection, unless using 100% rated equipment. (NEC 690.64 & 705.12)

Section 6: Electrical Connections

☐ Crimp on terminals are listed and installed using a listed tool specified for use in crimping those specific crimps. (NEC 110.3(B) & 110.14)

☐ Pressure terminals are listed for the environment and tightened to manufacturer recommended torque specifications. (NEC 110.11, 110.3(B) & 110.14)

☐ Connectors are listed for the voltage of the system and have appropriate temperature and ampere ratings. (NEC 110.3(B) & 110.14)

☐ Twist on wire connectors are listed for the environment (i.e. wet, damp, direct burial, etc.) and installed per manufacturer’s instructions. (NEC 110.11, 110.3(B), 110.14 & 300.5(B))

☐ Power distribution blocks are listed. (NEC 690.4 & 314.28(E))

☐ Terminals containing more than one conductor are listed for multiple conductors. (NEC 110.14(A) & 110.3(B))

☐ Connectors and terminals used for fine strand conductors are listed for use with such conductors. (NEC 110.14(A) & 110.3(B))
Connectors that are readily accessible and operating at over 30 volts require a tool for opening. (NEC 690.33(C))

Module connectors are tight and secure. (NEC 110.3(B) & 110.12)

Wiring and connections of inverters, PV source circuits, battery connections, etc., and all interconnections are performed by qualified personnel. (NEC 690.4(C))

Section 7: Charge Controllers

Charge controller is listed to UL Standard 1741. (NEC 110.3 & 690.4(B))
Exposed energized terminals are not readily accessible. (NEC 110.24)
Diversion charge controllers that are used as the sole means of regulating charging of batteries have a second independent means of control to prevent overcharging. (NEC 690.72(B)(1))

Section 8: Disconnects

Disconnects used in DC circuits are listed for DC operation. (NEC 110.3)
Disconnects are installed for all current carrying conductors of the PV source. (NEC 690.13)
Disconnects are installed for the PV equipment. NOTE: For inverters and other equipment that are energized from more than one source, the disconnecting means must be grouped and identified. (NEC 690.15)
Disconnects and overcurrent protection are installed for all ungrounded conductors in ungrounded (transformerless) PV power systems. (NEC 240.15 & 690.35)

Section 9: Inverters

Inverters are listed to UL 1741. (NEC 690.4(B)) NOTE: grid-tied system inverters need to be identified for use in interactive power systems.
Point of connection is at a dedicated breaker or disconnect. (NEC 690.64 & 705.12(D)(1))
Total rating of the overcurrent devices supplying equipment does not exceed 120% of the equipment rating. (NEC 690.64 & 705.12(D)(2))
Listed AC and DC disconnects and overcurrent protection are grouped and identified. (NEC 690.15)
No multi-wire branch circuits are installed where single 120-volt inverters are connected to 120/240-volt load centers. (NEC 690.10(C))
The plastic barrier is re-installed between the AC, DC wiring and communication wires. (NEC 110.3(B) & 110.27)
Section 10: Batteries

- Storage batteries for dwellings have the cells connected to operate at less than 50 volts. (NEC 690.71(B)(1))
- Live parts of battery systems for dwellings are guarded to prevent accidental contact by persons or objects. (NEC 690.71(B)(2))
- Flexible battery cables are listed RHW or THW, 2/0 minimum for battery cell connections. (NEC 690.74) NOTE: welding cables, marine, locomotive (DLO), and automotive cables do not meet the current Electrical Code requirements. (NEC 110.3(A) & (B))
- Flexible battery cables do not leave the battery enclosure. (NEC 690.74 & 400.8)
- Flexible, fine strand cables are only be used with terminals, lugs, devices and connectors that are listed and marked for such use. (NEC 690.31(F), 690.74, 110.3(B) & 110.14)
- High interrupt, listed, DC rated fuses or circuit breakers are used in battery circuits. The AIC is at least 20,000 amps. (NEC 690.71(C)) & 110.9)
- Cables to inverters, DC load centers, and/or charge controllers are in a conduit. (NEC 690.13(A) & 690.31(G)
- Conduits enter the battery enclosure below the tops of the batteries. NOTE: this is to avoid accidental ventilation of gases into electrical equipment where sparks may occur. Follow battery enclosure manufacturer’s instructions for venting and conduit locations. (NEC 110.3 (B), 480.9(A) & 480.10)
- A disconnect means is provided for all undergrounded conductors derived from a stationary battery system over 30 volts. (NEC 480.6(A) & 690.15) NOTE: see NEC 690.71 (C) for additional service disconnecting means requirements for series connected battery circuits.
- Area is well ventilated and the batteries are not installed in living areas. (NEC 480.9(A) & 480.10)

Section 11: Signs and Labels

- All interior and exterior DC conduit, enclosures, raceways, cable assemblies, junction boxes, combiner boxes, and disconnects are marked. (NEC 690.31(G)(3))
- The markings on the conduits, raceways and cable assemblies are every 10 feet, within one foot of all turns or bends and within one foot above and below all penetrations of roof/ceiling assemblies, walls and barriers. (NEC 690.31(G)(4))
- The markings say “WARNING: PHOTOVOLTAIC POWER SOURCE” and have 3/8 inch (9.5mm) minimum-sized white letters on a red background. The signs are made of reflective weather resistant material. Self-adhesive signs are available from suppliers. (NEC 690.4(G)(4))
- Labels are phenolic where exposed to sunlight. Labels required on conduit are permanent, weather resistant and suitable for the environment. Labels have a red background with white lettering. The following labels are required as applicable:
Table: Signage Requirements for PV Systems

<table>
<thead>
<tr>
<th>Code Section</th>
<th>Location of Label</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC 690.5(C)</td>
<td>Utility-interactive inverter & battery enclosure</td>
<td>WARNING: ELECTRIC SHOCK HAZARD IF A GROUND FAULT IS INDICATED, NORMALY GROUNDED CONDUCTORS MAY BE UNGROUNDED AND ENERGIZED.</td>
</tr>
<tr>
<td>NEC 690.35(F)</td>
<td>All enclosures with ungrounded circuits or devices which are energized and may be exposed during service.</td>
<td>WARNING: ELECTRIC SHOCK HAZARD. THE DC CONDUCTORS OF THIS PHOTOVOLTAIC SYSTEM ARE UNGROUNDED AND MAY BE ENERGIZED.</td>
</tr>
<tr>
<td>NEC 690.13(B)</td>
<td>On the main service when DC wiring is run through the building and the DC disconnect is located other than at the main service.</td>
<td>DC DISCONNECT IS LOCATED…</td>
</tr>
<tr>
<td>NEC 690.53</td>
<td>On the DC disconnects</td>
<td>OPERATING CURRENT__ OPERATING VOLTAGE__ MAXIMUM SYSTEM VOLTAGE__ MAXIMUM CIRCUIT CURRENT__</td>
</tr>
<tr>
<td>NEC 690.54</td>
<td>At interactive points of interconnection, usually the main service.</td>
<td>RATED AC OUTPUT CURRENT __ AMPS NORMAL OPERATING AC VOLTAGE __ VOLTS</td>
</tr>
<tr>
<td>NEC 690.56(B)/690.14(D)(4), 705.10, NEC 690.4(H)</td>
<td>At the electrical service and at the PV inverter if not at the same location.</td>
<td>A directory providing the location of the service disconnecting means and the photovoltaic system disconnecting means.</td>
</tr>
<tr>
<td>Code Section</td>
<td>Location of Label</td>
<td>Text</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>NEC 690.17</td>
<td>On the DC disconnect and on any equipment that stays energized in the off position from the PV supply.</td>
<td>WARNING! ELECTRIC SHOCK HAZARD. DO NOT TOUCH TERMINALS. TERMINALS ON BOTH THE LINE AND LOAD SIDES MAY BE ENERGIZED IN THE OPEN POSITION.</td>
</tr>
<tr>
<td>Nec 690.17E. Check on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEC 690.64(B)(7)—changed</td>
<td>Inverter output OCPD</td>
<td>WARNING: INVERTER OUTPUT CONNECTION DO NOT RELOCATE THIS OVERCURRENT DEVICE.</td>
</tr>
<tr>
<td>Common Utility Requirement</td>
<td>At the main electrical service when a supply side tap is used.</td>
<td>CAUTION! SUPPLY SIDE TAP. OPEN AND LOCK AC PV DISCONNECT BEFORE REMOVING METER.</td>
</tr>
<tr>
<td>NEC 690.55</td>
<td>Battery enclosure</td>
<td>MAXIMUM OPERATING VOLTAGE, EQUALIZATION VOLTAGE POLARITY OF GROUNDED CONDUCTORS.</td>
</tr>
<tr>
<td>When approved by the AHJ through NEC load calculations. NOTE: this is for a reduction of the existing main breaker to facilitate the added PVOCPD. There are no exceptions to 690.64(B)(2) and 705.12(D)(2) for the sum of OCPDs exceeding 120% of bus rating, even based on calculations. The main breaker may not be reduced below minimum requirements of NEC 230.79.</td>
<td>Main electric service</td>
<td>MAXIMUM MAIN BREAKER SIZE: XXX AMPS.</td>
</tr>
<tr>
<td>IFC 605.11.1.4</td>
<td>On conduit, raceways, and enclosures, mark every 10 feet, at turns, above/below penetrations.</td>
<td>WARNING: PHOTOVOLTAIC POWER SOURCE.</td>
</tr>
</tbody>
</table>
Section 12: Fire Safety

☐ Rooftop mounted PV panels and modules have the proper fire classification rating. (IBC 1510.7.2)

☐ All roofs have an access point that does not place ground ladders over openings such as windows or doors, are located at strong points of building construction, and in locations where the access point does not conflict with overhead obstructions such as tree limbs, wires or signs. (IFC 605.11.1.1)

☐ Roofs with slopes greater than 2:2 have solar panel layouts that meet the following criteria: (some exceptions apply, see diagrams in IFC)

 o Hip Roofs: Panels/modules are located so that there is a 3-foot wide clear access pathway from the eave to the ridge on each roof slope where panels/modules are located. (IFC 605.11.1.2.2)

 o Hips and Valleys: If panels/modules are placed on both sides of a hip or valley they are located no closer than 18 inches to a hip or valley. If the panels are located on only one side of a hip or valley that is of equal length, then the panels can be placed directly adjacent to the hip or valley. (IFC 605.11.1.2.4)

 o Single Ridges: Panels/modules are located so that they are two 3-foot wide access pathways from the eave to the ridge on each roof slope where there are panels/modules installed. (IFC 605.11.1.2.3)

 o Ridges: Panels/modules are located no higher than 3 feet from the top of the ridge in order to allow for fire department smoke ventilation operations. (IFC 605.11.1.2.5)

 o Access pathways are located at a structurally sound location capable of supporting the load of fire fighters accessing the roof. (IFC 605.11.1.2.2)